

Graph Processing Toolkit (gpt)

SeaDAS Dev Team

- What is gpt?
- How does it work?
- Use case

Graph Processing Framework

- GPF Graph Processing Framework
 - > Allows to construct directed, acyclic graphs (DAG) of processing nodes
 - A node in the graph refers to a data processor or operator, such as Read, BandMaths, Collocate, etc
 - Pull processing, each node pulls at its source node first in order to perform the algorithm it implements
 - The actual processing of a graph is triggered by requesting samples from one of its nodes, usually the final node in the DAG.
- GPF Operators can be invoked in two ways:
 - command-line using the GPF Graph Processing Tool (gpt), located in SeaDAS bin directory
 - dedicated user interfaces in SeaDAS application.

Graph Processing Framework

- *gpt* is used to execute BEAM raster data operators in batch-mode from command line.
 - > operators can be used stand-alone or combined as a directed acyclic graph (DAG).

Con DAc

- > Processing graphs are represented using XML.
- Usage:
 - gpt <op>graph-file> [options] [<source-file-1> <source-file-2> ...]

- BandMaths Creates a product with one or more bands using mathematical expressions
- Bathymetry Creates a bathymetry band, elevation band, topography band and bathymetry mask
- Binning Performs spatial and temporal aggregation of pixel values into cells ('bins') of a planetary grid
- Collocate Collocates two products based on their geo-coding
- EMClusterAnalysis Performs an expectation-maximization (EM) cluster analysis
- KMeansClusterAnalysis Performs a K-Means cluster analysis
- LandWaterMask Creates a single band target product for a land/water-mask, using SRTM-shapefiles [60° N, 60° S] and the GlobCover world map (above 60° N)
- Merge Copies raster data from a number of source products to a specified 'master' product
- Meris.N1Patcher Copies an existing N1 file and replaces the data for the radiance bands

gpt Operators (contn'd)

- Mosaic Creates a mosaic out of a set of source products.
- PCA Performs a Principle Component Analysis.
- PixEx Extracts pixels from given locations and source products.
- Read Reads a product from disk.
- Reproject Reprojects a source product to a target Coordinate Reference System.
- StatisticsOp Computes statistics for an arbitrary number of source products.
- Subset Creates a spatial and/or spectral subset of a data product.
- TemporalPercentile Computes percentiles over a given time period.
- Unmix Performs a linear spectral unmixing.
- Write Writes a data product to a file.

gpt command line execution

- The gpt is located in \$SEADAS_INSTALL_DIR\$/bin
- Help gpt.command -h (on mac)
 gpt.sh -h (on linux)
- Help for a particular operator -

gpt \$OperatorName\$ -h.

Sample gpt Operator

gs616-seadas1:Sergio aabduraz\$ gpt -h Subset Usage: gpt Subset [options]	
Description: Create a spatial and/or spectral subset of a data product.	
Source Options:	
-Ssource= <file> The source product to create t This is a mandatory source.</file>	the subset from.
Parameter Options:	
-PbandNames= <string,string,string,></string,string,string,>	The comma-separated list of names of bands to be copied. If not given, all bands are copied.
-PcopyMetadata= <boolean></boolean>	Whether to copy the metadata of the source product. Default value is 'false'.
-PfullSwath= <boolean></boolean>	Forces the operator to extend the subset region to the full swath. Default value is 'false'.
-PgeoRegion= <geometry></geometry>	The subset region in geographical coordinates using WKT-format, e.g. POLYGON((<lon1> <lat1>, <lon2> <lat2>,, <lon1> <lat1>)) (make sure to quote the option due to spaces in <geometry>). If not given, the entire scene is used.</geometry></lat1></lon1></lat2></lon2></lat1></lon1>
-PsubSamplingX= <int></int>	The pixel sub-sampling step in X (horizontal image direction) Default value is '1'.
-PsubSamplingY= <int></int>	The pixel sub-sampling step in Y (vertical image direction) Default value is '1'.
-PtiePointGridNames= <string,string,string,></string,string,string,>	The comma-separated list of names of tie-point grids to be copied. If not given, all bands are copied.

<node id="subsetNode">

<operator>Subset</operator>

<sources>

<source>\${source}</source>

</sources>

<parameters>

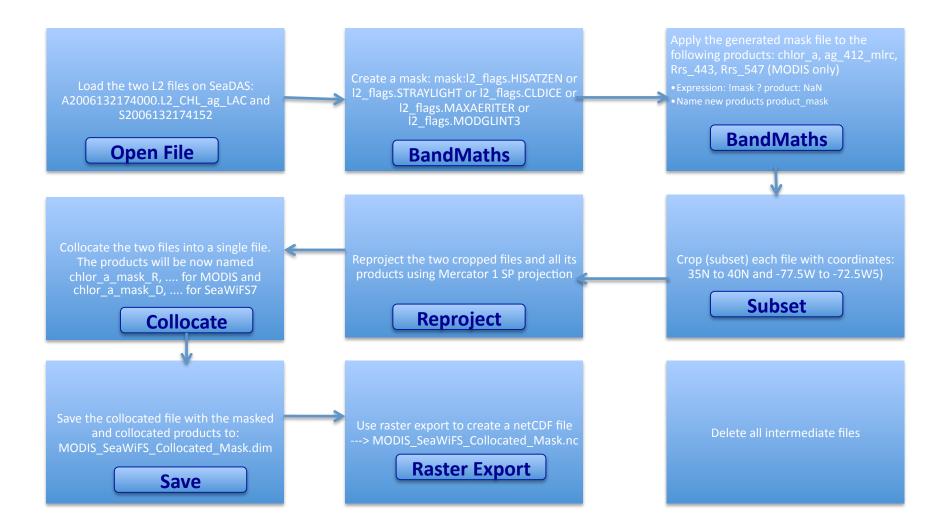
<geoRegion>POLYGON((-77.5 40, -77.5 35, -72.5 35, -72.5 40, -77.5
40)]/ geoRegion>

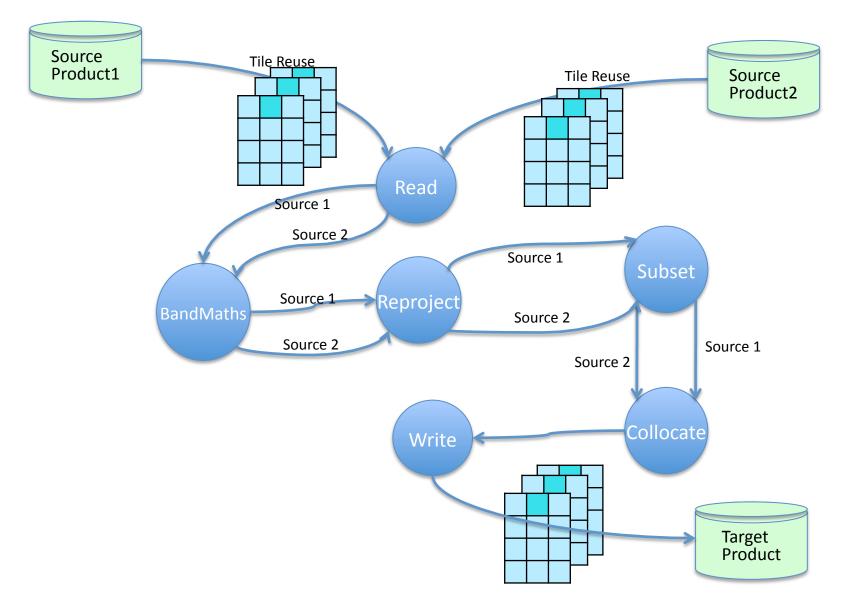
<bandNames>chlor_a, Rrs_443 </bandNames>

<copyMetadata>true</copyMetadata>

</parameters>

</node>




- 1. Load the two L2 files on SeaDAS: A2006132174000.L2_CHL_ag_LAC and S2006132174152
- 2. Create a mask: mask:12_flags.HISATZEN or 12_flags.STRAYLIGHT or 12_flags.CLDICE or 12_flags.MAXAERITER or 12_flags.MODGLINT3
- 3. Apply the generated mask file to the following products: chlor_a, ag_412_mlrc, Rrs_443, Rrs_547 (MODIS only)
 - 1. Expression: !mask ? product: NaN
 - 2. Name new products product_mask
- 4. Crop (subset) each file with coordinates: 35N to 40N and -77.5W to -72.5W5)
- 5. Reproject the two cropped files and all its products using Mercator 1 SP projection
- 6. Collocate the two files into a single file. The products will be now named chlor_a_mask_R, for MODIS and chlor_a_mask_D, for SeaWiFS7
- 7. Save the collocated file with the masked and collocated products to: MODIS_SeaWiFS_Collocated_Mask.dim
- 8. Use raster export to create a netCDF file -> MODIS_SeaWiFS_Collocated_Mask.nc
- 9. Delete all intermediate files

Steps in SeaDAS Application

Graph Processing in Batch

CONDAC.

- 1. Load the two L2 files on SeaDAS: A2006132174000.L2_CHL_ag_LAC and S2006132174152
- 2. Create a mask: mask:I2_flags.HISATZEN or I2_flags.STRAYLIGHT or I2_flags.CLDICE or I2_flags.MAXAERITER or I2_flags.MODGLINT3

- 3. Apply the generated mask file to the following products: chlor_a, ag_412_mlrc, Rrs_443, Rrs_547 (MODIS only)
 - 1. Expression: !mask ? product: NaN
 - 2. Name new products product_mask
- 4. Reproject the two cropped files and all its products using Mercator 1 SP projection
- 5. Crop (subset) each file with coordinates: 35N to 40N and -77.5W to -72.5W5)
- 6. Collocate the two files into a single file. The products will be now named chlor_a_mask_R, for MODIS and chlor_a_mask_D, for SeaWiFS7
- 7. Save the collocated file with the masked and collocated products to: MODIS_SeaWiFS_Collocated_Mask.dim
- 8. Use raster export to create a netCDF file -> MODIS_SeaWiFS_Collocated_Mask.nc
- 9. Delete all intermediate files

BandMaths Operator

con DAc

```
<node id="bandMathsNode">
    <operator>BandMaths</operator>
   <sources>
        <sourceProducts>${source}</sourceProducts>
   </sources>
    <parameters>
        <targetBands>
            <targetBand>
                <name>chlor_a</name>
                <expression>!MY_MASK ? chlor_a : NaN</expression>
                <description>chlor_a</description>
                <type>float32</type>
                <validExpression>chlor_a &gt; 0.001 AND chlor_a &lt; 100</validExpression>
                <noDataValue>-32767.0</noDataValue>
                <spectralBandIndex>0</spectralBandIndex>
            </targetBand>
        </targetBands>
        <variables>
            <variable>
                <name>MY MASK</name>
                <type>boolean</type>
                <value>(12 flags.HISATZEN ||12 flags.STRAYLIGHT || 12 flags.CLDICE || 12 flags.MAXAERITER ||
                    l2 flags.MODGLINT)
                </value>
            </variable>
        </variables>
   </parameters>
</node>
```


- 1. Load the two L2 files on SeaDAS: A2006132174000.L2_CHL_ag_LAC and S2006132174152
- 2. Create a mask: mask:12_flags.HISATZEN or 12_flags.STRAYLIGHT or 12_flags.CLDICE or 12_flags.MAXAERITER or 12_flags.MODGLINT3
- 3. Apply the generated mask file to the following products: chlor_a, ag_412_mlrc, Rrs_443, Rrs_547 (MODIS only)
 - 1. Expression: !mask ? product: NaN
 - 2. Name new products product_mask
- 4. Reproject the two cropped files and all its products using Mercator 1 SP projection
- 5. Crop (subset) each file with coordinates: 35N to 40N and -77.5W to -72.5W5)
- 6. Collocate the two files into a single file. The products will be now named chlor_a_mask_R, for MODIS and chlor_a_mask_D, for SeaWiFS7
- 7. Save the collocated file with the masked and collocated products to: MODIS_SeaWiFS_Collocated_Mask.dim
- 8. Use raster export to create a netCDF file -> MODIS_SeaWiFS_Collocated_Mask.nc
- 9. Delete all intermediate files

Reproject Operator


```
<node id="reprojNode">
   <operator>Reproject</operator>
   <sources>
        <source>bandMathsNode</source>
   </sources>
   <parameters>
        <crs>PR0JCS["Mercator_1SP / World Geodetic System 1984",
            GEOGCS["World Geodetic System 1984",
           DATUM["World Geodetic System 1984",
           SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG", "7030"]],
           AUTHORITY["EPSG","6326"]],
           PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG", "8901"]],
           UNIT["degree", 0.017453292519943295],
           AXIS["Geodetic longitude", EAST],
           AXIS["Geodetic latitude", NORTH]],
           PROJECTION["Mercator_1SP"],
           PARAMETER["latitude of origin", 0.0],
           PARAMETER["central meridian", 0.0],
           PARAMETER["scale_factor", 1.0],
           PARAMETER["false_easting", 0.0],
           PARAMETER["false_northing", 0.0],
           UNIT["m", 1.0],
           AXIS["Easting", EAST],
           AXIS["Northing", NORTH]]
        </crs>
        <resampling>Nearest</resampling>
        <orthorectify>false</orthorectify>
        <noDataValue>NaN</noDataValue>
        <includeTiePointGrids>true</includeTiePointGrids>
        <addDeltaBands>false</addDeltaBands>
   </parameters>
</node>
```


- 1. Load the two L2 files on SeaDAS: A2006132174000.L2_CHL_ag_LAC and S2006132174152
- 2. Create a mask: mask:12_flags.HISATZEN or 12_flags.STRAYLIGHT or 12_flags.CLDICE or 12_flags.MAXAERITER or 12_flags.MODGLINT3
- 3. Apply the generated mask file to the following products: chlor_a, ag_412_mlrc, Rrs_443, Rrs_547 (MODIS only)
 - 1. Expression: !mask ? product: NaN
 - 2. Name new products product_mask
- 4. Reproject the two cropped files and all its products using Mercator 1 SP projection
- 5. Crop (subset) each file with coordinates: 35N to 40N and -77.5W to -72.5W5)
- 6. Collocate the two files into a single file. The products will be now named chlor_a_mask_R, for MODIS and chlor_a_mask_D, for SeaWiFS7
- 7. Save the collocated file with the masked and collocated products to: MODIS_SeaWiFS_Collocated_Mask.dim
- 8. Use raster export to create a netCDF file -> MODIS_SeaWiFS_Collocated_Mask.nc
- 9. Delete all intermediate files

Subset Operator Sample Configuration

- 1. Load the two L2 files on SeaDAS: A2006132174000.L2_CHL_ag_LAC and S2006132174152
- 2. Create a mask: mask:12_flags.HISATZEN or 12_flags.STRAYLIGHT or 12_flags.CLDICE or 12_flags.MAXAERITER or 12_flags.MODGLINT3
- 3. Apply the generated mask file to the following products: chlor_a, ag_412_mlrc, Rrs_443, Rrs_547 (MODIS only)
 - 1. Expression: !mask ? product: NaN
 - 2. Name new products product_mask
- 4. Crop (subset) each file with coordinates: 35N to 40N and -77.5W to -72.5W5)
- 5. Reproject the two cropped files and all its products using Mercator 1 SP projection
- 6. Collocate the two files into a single file. The products will be now named chlor_a_mask_R, for MODIS and chlor_a_mask_D, for SeaWiFS7
- 7. Save the collocated file with the masked and collocated products to: MODIS_SeaWiFS_Collocated_Mask.dim
- 8. Use raster export to create a netCDF file -> MODIS_SeaWiFS_Collocated_Mask.nc
- 9. Delete all intermediate files


```
<node id="collocateNode">
     <operator>Collocate</operator>
     <sources>
       <master>${master}</master>
       <slave>${slave}</slave>
     </sources>
     <parameters>
       <targetProductName></targetProductName>
       <targetProductType>BEAM-DIMAP</targetProductType>
       <renameMasterComponents>true</renameMasterComponents>
       <renameSlaveComponents>true</renameSlaveComponents>
       <masterComponentPattern>${ORIGINAL_NAME}_R</masterComponentPattern>
       <slaveComponentPattern>${ORIGINAL NAME} D</slaveComponentPattern>
       <resamplingType>NEAREST_NEIGHBOUR</resamplingType>
     </parameters>
   </node>
```


- 1. Load the two L2 files on SeaDAS: A2006132174000.L2_CHL_ag_LAC and S2006132174152
- 2. Create a mask: mask:12_flags.HISATZEN or 12_flags.STRAYLIGHT or 12_flags.CLDICE or 12_flags.MAXAERITER or 12_flags.MODGLINT3
- 3. Apply the generated mask file to the following products: chlor_a, ag_412_mlrc, Rrs_443, Rrs_547 (MODIS only)
 - 1. Expression: !mask ? product: NaN
 - 2. Name new products product_mask
- 4. Crop (subset) each file with coordinates: 35N to 40N and -77.5W to -72.5W5)
- 5. Reproject the two cropped files and all its products using Mercator 1 SP projection
- 6. Collocate the two files into a single file. The products will be now named chlor_a_mask_R, for MODIS and chlor_a_mask_D, for SeaWiFS7
- 7. Save the collocated file with the masked and collocated products to: MODIS_SeaWiFS_Collocated_Mask.dim
- 8. Use raster export to create a netCDF file -> MODIS_SeaWiFS_Collocated_Mask.nc
- 9. Delete all intermediate files

Write Operator Sample Configuration

<node id="writeNode"></node>
<pre><operator>Write</operator></pre>
<sources></sources>
<pre><source/>collocateNode</pre>
<pre><pre>contents</pre></pre>
<file>/Users/Shared/Tutorial/gpt/MODIS_SEAWIFS_Collocated_Mask.nc</file> <formatname>NetCDF-CF</formatname>
<pre><deleteoutputonfailure>true</deleteoutputonfailure></pre>
<pre><writeentiretilerows>true</writeentiretilerows></pre>
<clearcacheafterrowwrite>true</clearcacheafterrowwrite>

Putting It All Together

- gpt_batch.xml
- gpt_batch.properties
- files.tx
- process.bash

while read -r m s f; do gpt gpt_batch.xml -p gpt_batch.properties -SsourceModis=\$m -SsourceSeawifs=\$s -PtargetFileName=\$f

done < files.txt