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ABSTRACT

The level-3 data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are statistical data
sets derived from level-2 data. Each data set will be based on a fixed global grid of equal-area bins that
are approximately 9 x 9km?. Statistics available for each bin include the sum and sum of squares of the
natural logarithm of derived level-2 geophysical variables where sums are accumulated over a binning period.
Operationally, products with binning periods of 1 day, 8 days, 1 month, and 1 year will be produced and archived.
From these accumulated values and for each bin, estimates of the mean, standard deviation, median, and mode
may be derived for each geophysical variable. This report contains two major parts: the first (Section 2) is
intended as a users’ guide for level-3 SeaWiF'S data products. It contains an overview of level-0 to level-3 data
processing, a discussion of important statistical considerations when using level-3 data, and details of how to
use the level-3 data. The second part (Section 3) presents a comparative statistical study of several binning
algorithms based on CZCS and moored fluorometer data. The operational binning algorithms were selected

based on the results of this study.

1. INTRODUCTION

The level-3 data processing stage is the first stage in
which data from the Sea-viewing Wide Field-of-view Sen-
sor (SeaWiFS) are spatially and temporally averaged. Prior
to this stage, a standard set of geophysical variables will
be derived for individual pixels. These level-2 variables in-
clude chlorophyll concentration, a diffuse attenuation co-
efficient, and water-leaving radiances in the visible bands
of SeaWiFS.

In generating level-3 data products, pixels containing
valid level-2 data will be mapped to a fixed spatial grid
whose resolution elements are 9 x 9km?. These square
grid elements or bins are arranged in rows beginning at
the South Pole. Each row begins at 180° longitude and
circumscribes the Earth at a given latitude. There are
5,940,422 bins for each level-3 data set. Within each bin,
statistics will be accumulated for time periods of 1 day, 8
days (often referred to as the weekly product), 1 month,
and 1 year. There will be a global level-3 data product
archived for each day, 8-day period, calendar month, and
calendar year of the SeaWiF'S mission.

The level-3 data products may be used to derive the
mean, standard deviation, and other statistical measures
for the standard level-2 variables, and for certain other
variables, such as primary productivity, which are func-
tions of level-2 variables. The Coastal Zone Color Scan-
ner (CZCS) North Atlantic monthly composite chlorophyll
images (Esaias et al. 1986 and Feldman et al. 1989) are ex-
amples of monthly means derived from level-3 CZCS data.

The purpose of binning data is to create reduced-volume
data sets appropriate for use in climate and basin-scale bio-
geochemical models. By averaging data over time periods
of several days or longer, problems of missing data can
be overcome. Although temporal and spatial resolutions
are reduced, compared with the level-2 data, the resulting
smoothed level-3 means are effective in depicting seasonal
patterns on regional and basin scales.

There are important statistical considerations that in-
volve the use of level-3 data. Users should be aware of
these considerations, especially in situations where level-3
data are used in models to derive other variables. For ex-
ample, to use a mean chlorophyll concentration (level-3
variable) in an algorithm to derive mean primary produc-
tivity might result in significantly biased results. Recom-
mended procedures for using level-3 variables in models
are presented in this report.

The remainder of this report is divided into two parts.
The first part (Section 2) is intended to serve as a guide for
users of level -3 data products. Section 2.1 is an overview of
the processing from level-0 to level-3. Section 2.2 contains
a discussion of the important statistical considerations in-
volved in using level-3 data, and Section 2.3 provides the
equations to be used to compute the mean, standard devia-
tion, median, and mode of each level-3 variable. Equations
for computing statistics of level-4 variables, derived from
level-3 variables, are given in Section 2.4.

The second part (Section 3) documents a statistical
study based on CZCS data and moored fluorometer data
which compared alternative binning algorithms. Results
of this study were the basis for the selection of the binning
algorithm used. Three color plates compare the results of
alternative binning algorithms applied to seven represen-
tative CZCS scenes.

In addition, there are three appendices providing de-
tails for statisticians and programmers who may wish to
write codes to bin data. Appendix A explains the proce-
dure used for mapping pixels to bins based on the center
latitude and longitude of the pixel, and for determining the
latitude and longitude coordinates of a bin. Appendix B
contains details of the weighting scheme used for weight-
ing data from different orbits (times). Appendix C con-
tains three pseudocodes that reveal how data are accu-
mulated spatially (Space Binner Code), temporally (Time
Binner Code) and how means, standard deviations, and



Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms

other statistics are calculated from the binned data (Bin
Data Interpreter Code).

2. USERS’ GUIDE

2.1 Overview of Data Processing

As the name would suggest, the level of a data product
refers to the amount of processing that has been applied
to the data. Certain conventions have been adopted to
describe the major levels of processing.

2.1.1 Level-0 Data

Data recorded on board the satellite and subsequently
broadcast to ground receiving stations are called level-0
data. Data broadcast directly (without being recorded) are
also considered level-0 data. The recorded data provide
either local area coverage (LAC) or global area coverage
(GAC). This classification refers to the spatial resolution of
the data. In SeaWiFS LAC data, the spatial resolution is
1.1km at nadir (directly beneath the satellite), and pixels
are contiguous.

The GAC data are comprised of individual pixels hav-
ing the same spatial resolution as LAC data (1.1km), but
the pixels are spaced at 4.4km intervals. The GAC data
are created on board the satellite by selecting every fourth
pixel on every fourth scan line. This subsampling reduces
the volume of data required to provide global coverage.
A comparative study of alternative GAC sampling algo-
rithms was reported by McClain et al. (1992).

Only a limited amount of LAC data will be recorded
on board SeaWiFS. However, LAC data will be contin-
uously broadcast as high-resolution picture transmission
(HRPT) data to sites around the world which operate li-
censed ground-receiving stations. All HRPT data will be
LAC data.

2.1.2 Level-1a Data

The level-1a products include the raw image data and
all instrument and spacecraft telemetry, as in the level-0
data, together with appended instrument calibration and
navigation data. In addition, instrument telemetry and
selected spacecraft telemetry are reformatted and also ap-
pended.

Approximately 40 minutes of contiguous level-1 data
are produced on the daylight portion of each orbit. Op-
erationally, this 40-minute swath may be subdivided into
two or more level-1 scenes. The division may occur when
the sensor tilt is changed, i.e., so each scene would nom-
inally have a constant sensor tilt, or other criteria, e.g.,
maximum scan lines per scene, may dictate further subdi-
visions of the swath.

The level-1a data can be used to calculate calibrated
radiances in units of Wm™2 um~!sr~! in the 8 spectral
bands of SeaWiFS. This radiance received at the satellite

altitude is solar radiation backscattered from the Earth’s
atmosphere, ocean, clouds and land. Water-leaving radi-
ance (the signal of interest) usually comprises less than
10% of the total signal.

2.1.3 Level-2 Data

Geophysical properties of the ocean and atmosphere
derived from level-la data are considered level-2 data.
Level-2 data correspond to the original pixel positions;
there is no remapping. Each level-2 scene corresponds to
a level-1 scene and vice versa; there is no change in the
geographical coverage of each scene for operational prod-
ucts.

Before computing level-2 data, pixels are eliminated if
they contain clouds, sun glint, or other abnormalities. For
pixels that pass these screens, an atmospheric correction
algorithm (Gordon et al. 1983 and Gordon and Castafio
1987) is applied to subtract the atmospheric scattering
components from the total radiance, and thus derive the
water-leaving radiances in bands 1-5. Then, bio-optical
algorithms (Clark 1981 and Gordon and Morel 1983) are
applied to the water-leaving radiances to derive in-water
properties.

Standard variables currently planned for computation
are:

Lwn(\;) normalized water-leaving radiances in the
bands ¢ = 1-5,
L,(\;) atmospheric aerosol radiances in the bands
1 =6-8,
74(865) aerosol optical thickness at 865nm (band
8),
PIG CZCS-like pigment concentration (mgm=3),

CHL
K90

chlorophyll a concentration (mgm~2), and

diffuse attenuation coefficient at 490nm
(m™h).

2.1.4 Level-3 Data

The level-3 data are statistical data products derived
by binning level-2 GAC data. This is the first stage at
which data are both spatially and temporally averaged. A
level -3 product will be produced for each day, 8-day period
(week), calendar month, and calendar year of the SeaWiF$S
mission. The 8-day periods are started from the first day
of each calendar year. Thus, there will be 46 weeks per
calendar year, with the last week having only 5 or 6 days
instead of 8.

Each data product will contain statistics derived by
mapping level-2 data to a fixed global grid whose resolu-
tion elements (called bins) are approximately 9 x 9km?.
The bins are arranged in rows beginning at 180° longitude
and circumscribing the Earth eastward at a given latitude.
There are 5,940,422 bins for each level -3 data product. Ap-
pendix A contains details related to the gridding scheme,
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and the precise areal coverage and geographic location of
each bin.

Statistical data provided with the level-3 data products
will allow users to calculate the mean, standard deviation,
median, and mode for each level-2 variable listed above.
The procedures are described in Section 2.3, and pseu-
docodes for programming implementation are detailed in
Appendix C.

In addition to level -2 variables, statistical data will also
be provided for the ratio:

CHL
Kyg

ICk = (1)

calculated at each pixel in the level-2 data set (but not
saved as a level-2 variable). This ratio, which appears in
several primary productivity algorithms (Balch et al. 1992,
Platt and Sathyendranath 1988, Eppley et al. 1985, Smith
and Baker 1978, and Bannister 1974), may be regarded as
the integral chlorophyll (units of mgm™2) integrated over
the upper optical depth. The rationale for including this
as a level-3 variable will be presented in Section 2.2.

In addition to the level-3 data products, a number of
standard level-3 image products will be produced. These
will include standard mapped images, which are equirec-
tangular projections of means derived from the level-3 sta-
tistical data, and reduced resolution images intended for
browsing purposes.

2.1.5 Level-4 Data

In this report, variables derived from level-3 data will
be called level-4 variables. It is anticipated that level-3
data will be used as input to biogeochemical models where
the goal of the modeling is to estimate global fluxes of key
elements such as carbon and nitrogen. In such applica-
tions, it is important that the level-4 variable represent a
spatial-temporal mean, e.g., the average daily, weekly, or
monthly carbon flux. The practice of substituting means
into models to produce spatial-temporal means can result
in significantly biased results. This will be discussed fur-
ther in Section 2.2.

The methods used to produce the level -3 SeaWiFS data
have been designed to overcome this problem for a large
class of level-4 variables. Procedures for computing un-
biased estimates of the mean of level-4 variables will be
discussed in detail in the following sections.

2.2 Statistical Considerations

The question of how to bin SeaWiFS data revolved
around certain statistical issues. Many of the issues or
questions raised had come to light through the experience
of binning CZCS data into daily, monthly, and yearly com-
posites. There were several proposed ways to average data,
and results would be significantly different depending on
the method chosen. It was further recognized that the

choice of method should depend on how level-3 SeaWiFS
data are to be used. The practice of using level-3 means in
equations to derive level-4 means was inappropriate, and,
therefore, this issue had to be addressed as well.

Following is a discussion of four major issues and the
summary of the decisions related to each. In many in-
stances, decisions were based on a statistical analysis of
CZCS data and moored fluorometer time-series data. The
results of the statistical study are presented in Section 3.
The four issues were:

1. Should statistics be computed for CHL or for
log(CHL)? What about other level-2 variables?

2. What is the best method for estimating level-4
variables?

3. What statistics should be saved for each sam-
pling domain?

4. Should the temporal statistics give equal weight
to all data falling within the sampling domain?
Or, should some accommodation be made to
compensate for the uneven temporal distribu-
tion of data?

2.2.1 CHL vs. log(CHL) Statistics

Chlorophyll measurements tend to be lognormally dis-
tributed, i.e., log(CHL) is normally distributed, in large
data sets of satellite or ship data (Fig. 1). Lognormal dis-
tributions occur commonly in biological processes where
the rate of change of a variable is proportional to its size
(Aitchison and Brown 1957 and Crow and Shimizu 1988).
One of the first issues addressed, therefore, was whether or
not statistics should be computed for CHL or for log(CHL).
The same question was also addressed for other varia-
bles.

It is fairly common practice to log-transform CHL mea-
surements before using them in other derivations. For ex-
ample, Chelton and Schlax (1991) used log-transformed
data in comparing time averages of chlorophyll data. The
CZCS pigment algorithm was derived by a linear regression
of log(CHL) versus log-transformed radiance ratios, and
CZCS pigment images are usually scaled according to the
logarithm of pigment. The mean derived by first averaging
log-transformed data and then inverting the transform is
the geometric mean. Is the geometric mean preferable to
the arithmetic mean?

It was agreed at the outset that the arithmetic mean
is the appropriate mean for most biogeochemical applica-
tions. The mean chlorophyll concentration, for example,
represents the mean biomass per unit volume which will
subsequently be multiplied by total volume (depth x area)
to estimate regional or global biomass. However, the sam-
ple mean derived from small samples might be a poor es-
timator of the true population mean.

Let X be a lognormally distributed variable (Fig. 2),
and let X denote the true mean of X within a sampling
domain. In the context of the SeaWiFS data processing,
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Fig. 1. Histograms of chlorophyll concentration derived from in situ measurements. The top panel displays
11,176 measurements from the world ocean collected by C.S. Yentsch, 1956-86. The bottom panel displays 1,047
surface measurements from the northwest Atlantic continental shelf, Marine Resources Monitoring, Assessment,
and Prediction (MARMAP), 1978-82. (Campbell and O’Reilly 1988)
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Fig. 2. The lognormal distribution: The top panel displays a histogram of log(X), where log(X) is normally
distributed with mean 0 and standard deviation 0.4. The bottom panel shows the corresponding histogram of
the lognormal variable, X.
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“sampling domain” refers to a specific bin and averaging
period; X is the level-2 variable, and X its level-3 equiv-
alent. The question is: what is the best method for es-
timating X given a sample of n measurements (pixels):
Xq,..., X7

In the case of a lognormal distribution, the sample
mean (or arithmetic average):

Xovg = (2)

tends to underestimate the true population mean when
sample sizes are small (Baker and Gibson 1987). The
higher the variance of the underlying distribution, the more
this is true. The reason for this is that small samples tend
to miss high values which occur much less frequently than
low values. However, the high values have a significant
influence on the mean of the distribution. For example,
much of the biological production in the ocean occurs in
localized areas such as upwelling zones, and in transient
blooms of relatively short duration. A sample that misses
these areas and blooms would significantly underestimate
global or regional production.

Sample sizes involved in binning GAC data will be
small. Since the GAC data have a 4km spacing between
pixels, at most 9 pixels from a single orbital pass can fall
into an 9 X 9km bin. The average sample size will be
closer to four in data sets derived from a single orbital pass.
Although sample sizes will increase with longer averaging
periods, the variance will also increase. Thus, there was
concern that small sample sizes and large variances might
make the arithmetic average a poor estimator for level-3
means.

The practice of transforming data first, computing the
mean, m,, of log-transformed data

> n(x) ®
i=1

My =

and then estimating the mean of X as

Xgeom = €

My

(4)

gives the geometric mean. In the case of a lognormal vari-
able, the geometric mean is the median of the distribution.
For any distribution that is positively skewed, the geomet-
ric mean will underestimate the population mean.

Studies have shown that the maximum likelihood esti-
mator for a lognormal mean

Xmle = e(mz+%si)

()

performs better than either of the other two when variances
are large and sample sizes small (Baker and Gibson 1987).

In (5), m, is the sample mean of In(X), given by (3), and

s2 is the sample variance given by

n

si = %Z {1n(Xl-) —mxr.

i=1

(6)

Note that this is not the more commonly used unbiased es-
timator which uses a divisor of n—1 instead of n. However,
this is the maximum likelihood estimator for the variance
of a normal random variable. In order for (5) to be the
maximum likelihood estimator for X, m, and s must be
maximum likelihood estimators for the mean and variance
of In(X) (Crow and Shimizu 1988).

In the statistical study presented in Section 3, the three
estimators, Ya\,g, Ygeom, and X mie, were compared using
CZCS data and a time series of moored fluorometer data
(Medeiros and Wirick 1992). Results obtained for both

time and space averages were:

1. The sample mean, 7% (2), and the maximum

likelihood estimator, X . (5), gave equivalent
results.

2. The geometric mean or median, chom (4), was
systematically less than the other two.

The same results were obtained for other standard CZCS
variables: K99 and normalized water-leaving radiances
Lwn (). Thus, based on their performance as estimators
of the mean, Yavg and X1 were regarded as acceptable
estimators for the true population mean, X.

2.2.2 Estimating Level-4 Variables

It is not possible to prescribe a general method for es-
timating level-4 variables. The appropriate method will
depend on the nature of the relationship involved, i.e.,
whether it is linear or nonlinear, and the form it takes.

Let Y = f(X) be a relationship that defines the vari-
able Y as a function of the level-2 variable X, and let Y be
the level-3 equivalent of Y. That is, Y represents the true
mean of Y within a sampling domain. In general, X may
be a vector of level-2 variables, i.e., Y may be a function
of more than one level-2 variable.

The problem that motivates this issue is that Y is not,
in general, equal to f (Y) Substitution of the mean of X
into the function is only legitimate for linear functions. In
general, the mean of a function of several variables is not
equal to the function of the means.

For any general function, the only way to obtain an
accurate estimate of the true mean, Y, would be to com-
pute Y; = f(X;) at each pixel in the level-2 data, and then
determine its average using either the arithmetic average,
Yavg, or the maximum likelihood estimate, ¥ yie. In this
case, the function Y = f(X) would be a level-3 variable
computed by averaging over pixels in the level-2 data. An
example is ICk (1) which will be computed in this way.
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It is not possible or practical to anticipate the many
functions or mathematical relationships that may be ap-
plied to SeaWiFS data. Thus, there needed to be guide-
lines and methods for using level-3 data to obtain accurate
estimates of the mean of level-4 variables.

The decision was made to use the maximum likeli-
hood estimation (MLE) method instead of the more com-
mon arithmetic average (AVG) method because the MLE
method provides a way to estimate the mean (and other
statistics) for a large class of level-4 variables of the form

(7)

where A and B are constants, and X is a single variable,
i.e., not a vector.
For variables in this class, In(Y") is linearly related to

In(X)
(8)

and variance of In(Y) can be esti-

Y = AXPB

In(Y) = In(A) + Bln(X).

Therefore, the mean
mated as

In(A) + Bm, (9)

my =
and

2 _ p2.2
s, = B%s;

(10)

where m, and s2 are the mean and variance of In(X) de-
rived from the level-3 statistics saved for X.
According to the MLE method, the mean of Y is then
given by
lee = e(my+%832l) .

(11)

It should be noted that if (5) proves to be an accurate esti-
mator for the mean of X, then (11) will be an accurate esti-
mator for the mean of Y. There is no loss of accuracy since
(8)—(10) are exact relationships (not approximations).

The procedures for estimating the variance and other
statistics of level-3 and level-4 variables are described in
more detail in Sections 2.3 and 2.4 and in Appendix C. The
equations used are based on MLE methods for estimating
parameters of a lognormal distribution, and hence, they
are referred to as MLE estimators. As will be shown, the
MLE estimator is a robust estimator for the mean. That
is, it generally performs well even when the underlying dis-
tribution is not lognormal. Indeed, the MLE method was
not selected on the basis of an assumed lognormal distri-
bution, but because it performed well compared with the
arithmetic average (AVG estimator), and because it pro-
vided a method for estimating the mean of level-4 variables
of the form given by (7).

An example of such a function is the euphotic depth,
which is commonly defined as the 1% light-penetration
depth (Kirk 1983). Using the level-2 variable K499 and
applying Beer’s Law, this depth may be defined as

In(0.01)

Ze = —
K90

(12)

which represents the 1% light-penetration depth at A =
490 nm. If the mean of K499 based on level-3 data is used
to estimate the mean euphotic depth, this will yield a bi-
ased estimate of the mean euphotic depth. However, the
MLE method allows for an accurate estimate of the mean
Z. based on the saved statistics of ln(K490).

The equations proposed by Morel and Berthon (1989)
for deriving integral euphotic chlorophyll, (Chl);et, from
satellite-derived chlorophyll (or pigment) also take the form
of (7). Several algorithms for estimating integral produc-
tivity (Smith et al. 1982, Platt 1986, and Morel and Ber-
thon 1989) involve the product of (Chl)sos and photosyn-
thetically available radiation (PAR) at the surface, PAR(0).
The mean of this product can be derived as the product of
the means of (Chl)ot and PAR(0) since the two variables
are uncorrelated. Thus, these algorithms may be applied
to level -3 data using the saved statistics of standard level -2
variables.

2.2.3 Statistics Saved for Each Domain

Another issue that was raised concerned the choice of
statistics to save for each sampling domain. Given that
Xumie (5) is to be used for estimating the mean of the
level-2 data in each domain, the statistics saved must in-
clude the sum and sum of squares of the natural logarithm
of each variable. In addition, counts of the number of pixels
contributing to the sums and similar ancillary information
should also be saved.

Beyond this, further questions regarding what statis-
tics to save are motivated by the concern expressed earlier
as to how level-4 variables will be estimated. Two alter-
natives exist: either a) sufficient information is provided
in the level-3 data to allow estimation of these variables
using saved statistics of other variables or b) the variables
should be computed at each pixel of level-2 data and their
statistics saved as part of the level-3 data set. The latter
is more costly from the standpoint of the storage required
to add additional level-3 variables. As stated earlier, the
MLE method permits the former choice for variables of the
form given in (7).

There are other level -4 variables which cannot be calcu-
lated using only the saved statistics of the standard level -2
variables. Any variable that is a function of two or more
level -2 variables would require additional information on
the covariances between level-2 variables. An example of
this is the variable ICk (1) which appears in several pri-
mary productivity algorithms (Balch et al. 1992, Platt and
Sathyendranath 1988, Eppley et al. 1985, Smith and Baker
1978, and Bannister 1974). To apply the MLE method,
one must estimate the mean and variance of the natural
logarithm of ICy

ln(ICK) = ln(CHL) — 1n(K490). (13)

The mean of ln(ICK) is simply the difference between

the means of In(CHL) and ln(K4go), but the variance of
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In (ICK):

var[ln(ICK)} - var{ln(CHL)} + Var[ln(K4go)}

~ 2cov|In(CHL), In (Koo |

involves the covariance, denoted by “cov” in (14), between
In(CHL) and In(K4g0), as well as their variances. The
CZCS algorithms for CHL and K490 in Section 3 resulted
in a nonlinear relationship between In(CHL) and 1n(K490).
Thus, their covariance varied from sample to sample. For
this reason, it was decided to compute the variable ICk
(1) at each pixel in the level-2 data and save statistics of
ln(ICK) as part of the level-3 data.

2.2.4 Weighting of Temporal Statistics

After each level-2 scene is generated, valid level -2 data
from individual pixels will be binned. Sums and sums
of squares accumulated at this stage are called spatial
statistics, i.e., no temporal averaging is involved since data
from the same scene are regarded as simultaneous. Spatial
statistics from the same day will be combined into daily
products, from the same 8-day period into weekly prod-
ucts, and so forth. The daily, weekly, monthly, and longer-
term products will become the level-3 data, and the spatial
statistics pertaining to individual scenes will be discarded.

On a given day, there may be two sets of spatial statis-
tics for the same bin. Two sets might occur within the
same orbit on different tilt segments, i.e., before and af-
ter a change in the sensor’s tilt, or from different orbits
in high-latitude areas where swaths overlap. In the case
of two sets from the same orbit, only one set will be used.
The set having the better sun-target viewing geometry will
be selected. However, two sets of spatial statistics from
different orbits will receive the same treatment as spatial
statistics from different days. The same algorithms, called
temporal binning algorithms, will be used to combine data
separated by time gaps regardless of the size of the time
gap.

Let N be the number of sets of spatial statistics (or-
bits) contributing to a temporal mean; let ¢; be the time at
which the ith set was acquired; and let n; be the number
of pixels contributing to the ith set, where i =1,..., N. In
considering the temporal binning algorithms, a major con-
cern was the fact that the times are unevenly distributed,
and that the sample size (hence precision) varies from one
time to another. Samples sizes will vary between 1 and
9, depending on where the bin lies relative to the ground
track. Time gaps occur because of clouds, sunglint, and
other factors.

The methods used to compensate for unevenly distribu-
ted data generally involve a scheme for weighting data.
The alternative is to use simple composite statistics (un-
weighted data), which was the method used to create
level-3 CZCS data such as the North Atlantic monthly

composites (Feldman et al. 1989 and Esaias et al. 1986).
These monthly composites have served as useful products
for a number of scientific investigations (Campbell and
Aarup 1992, Yentsch 1990, and Lewis et al. 1988), but
some of the spatial patchiness in these data sets is an ar-
tifact of the uneven temporal distribution of data.

Chelton and Schlax (1991) have made a strong case for
the superiority of optimal interpolation methods as com-
pared to simple composite averages for deriving temporal
means of irregularly spaced data. Such methods, known
as kriging in the geostatistics literature (Journal 1989), re-
quire the use of correlation functions which must be deter-
mined a priori. When applied to satellite data, the meth-
ods could require both temporal and spatial correlation
functions.

The advantage of optimal interpolation methods is that
they allow estimates to be based on data that lie out-
side the domain (bin and time interval) being estimated.
The disadvantage is their computational complexity. Data
must be deseasonalized before applying the optimal inter-
polation method. That is, seasonal trends must be esti-
mated and subtracted from the data. Therefore, at least
a year of data must be collected before optimal interpola-
tion methods can be applied. This is not compatible with
the plan to generate level-3 data products along with the
level-2 data processing.

It was decided not to apply optimal interpolation meth-
ods in the level-3 binning process. However, the binned
statistics will be useful in applying optimal interpolation
methods during post-processing. As an example, daily
composite statistics might be used in deriving weekly and
monthly means using optimal interpolation methods.

The question was, therefore, whether to use simple
composite statistics (all data within a given domain are
given equal weight) or to develop a weighting scheme that
could be implemented easily at the time the level-2 data
are processed. In general, a decision to use weighted ver-
sus unweighted statistics should depend on the distribution
of the data wvis-a-vis any trends that might exist. Simple
unweighted statistics are recommended in the case where
there is no trend (either spatial or temporal), or where the
trend is impractical to estimate. The latter is the case for
the spatial statistics. These will be unweighted sums and
sums of squares of the pixels falling within each bin be-
cause it is impractical to estimate spatial trends for each
bin.

In the case of weekly and monthly statistics, there may
be significant trends that call for weighted sums. If sim-
ple composite (unweighted) statistics are used, each of the
N sets of spatial statistics will, in effect, be weighted by
its sample size, n;. Thus, for example, a data set having
n; = 9 would be much more heavily weighted than one
with n; = 1. Trends may be lost in this process. Alterna-
tively, a temporal mean might be calculated as the average
of N spatial means, regardless of the number of pixels con-
tributing to the spatial means. However, this would give
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too much weight to a data set with n; = 1 compared to one
with n; = 9. This concern reflects the belief that precision
is a function of sample size.

As a compromise to these two alternative approaches,
it was decided to apply a weight of ,/n; to the spatial mean
at time t;, where n; is the number of pixels falling in the
bin at time t¢;. This is effected by applying the weight

1
AvaLZ
to the sums and sums of squares associated with the spatial

statistics for time t¢;. Details of the weighting scheme are
given in Appendix B.

w; =

(15)

2.3 Protocols for Level-3 Statistics

The level-3 data products available for each day, week,
month, and year of the SeaWiF'S mission will allow users to
compute the mean, standard deviation, median, and mode
of each level-3 variable in each bin. The level-3 variables
consist of level-2 variables, and in addition, the variable
ICk (1).

For each level-3 variable X, the level-3 data consists
of a pair of sums for each bin

N
Sy = Z Z (16)
and
N
=3 Z[ ol a7)
where X;; is the jth observation of X at time ¢;. Each

observation corresponds to a pixel in the level-2 data. The
number n; is the number of pixels at time ¢; containing
valid level-2 data.

In addition, the following statistics are saved for each
bin:
b bin index number (range: 1,...,5,940,422),
N total number of orbits contributing data,
n total number of pixels contributing data, and
W sum of weights.

For the latter two quantities, their formulation is as follows:

N

n = Zm (18)
and .
N

W = Z\/n_ (19)

In addition to the above variables, there will be a 16-bit
time distribution variable T' whose bits indicate whether

data were available (bit = 1) or absent (bit = 0) in time in-
tervals (days, two-day intervals, or months) covered by the
averaging period. That is, each bit of the 16-bit number
represents a time interval within the averaging period, and
if a bit is set to 1, it indicates data were available during
that interval.

2.3.1 The Mean and Variance of In(X)

To estimate statistics for the variable X, the first step
is to calculate the mean and variance of In(X). These are
given by

51
. = 2t 20
m W (20)
and
52 = 52 _ m2. (21)

2.3.2 The Mean and Other Statistics of X

The mean of X is estimated by

lee = emw+%8i (22)
and the standard deviation by
SDy = Xme\e™ — 1. (23)
The median or geometric mean may be estimated by
chd = M= (24)
and the mode (most frequent value) by
Xinod = €M%, (25)

The above equations are based on the MLE method
which was demonstrated to be valid for means of CZCS
data and moored fluorometer data. Equations (22)—(25)
are based on an assumed lognormal distribution of X with-
in the sampling domain. For a discussion of the underly-
ing assumptions and robustness of the estimators see Sec-
tion 3.3.

2.4 Protocols for Level-4 Statistics

As defined earlier, a variable, Y = f(X), which is a
function of one or more level-3 variables, is called a level-4
variable. Here, guidelines are given for computing statis-
tics of several classes of level-4 variables. It is not possible
to specify protocols for all level-4 variables, in general, be-
cause the procedures depend on the function f(X).

2.4.1 Computing Statistics for Y=A+BX

If Y is a linear function of X, then the mean of Y is
given by the same linear function of the mean of X

Yoe = A + Blee. (26)
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The same is true for the median and mode of Y. The
standard deviation of Y is scaled by the factor B

SDy = B(SDy). (27)

2.4.2 Computing Statistics for Y=AXP

The MLE method was chosen because it provides a
robust method for estimating the mean of level-4 variables
of this form. To use the MLE method, one must first
estimate the mean and variance of In(Y’). These statistics,
my and s2, can then be substituted into (22)(25), in place
of m, and s2, to estimate the mean, standard deviation,
median, and mode of Y.

Let Y = f(X) be a function of this form where X is
a single level-3 variable. Its natural logarithm is a lin-
ear function of In(X) (8). If m, and s2 are statistics of
In(X) derived from the level-3 data sets by (20) and (21),
respectively, then the mean and variance of In(Y') are, re-
spectively:

m, = In(4) + Bm, (28)
and
s, = B’sl. (29)

Statistics of Y = f(X) can be derived by substituting
my =m, and s, = s2 into (22)-(25).

2.4.3 Statistics for Other Functions

So far the only considerations were functions of a sin-
gle variable X. In general, if Y is a function of two or
more level-3 variables, knowledge of the covariances be-
tween the level-3 variables is required to derive statistics
for Y. It was initially recommended that a covariance ma-
trix be saved as part of the level-3 statistics, but the stor-
age costs were considered too high. Subsequently, it was
decided to save statistics of ICk because this function ap-
pears frequently in primary productivity algorithms.

Another situation involving a function of several level -2
variables occurs when a regional bio-optical algorithm is
applied to derive better estimates of the CZCS-like pig-
ment concentration. For example, suppose the standard
(global) CZCS-like pigment algorithm is

(30)

PIG = A, [L‘W(M]Bg

L (A)

where Lywn(A;) and Lyn(A;) are the normalized water-
leaving radiance in bands ¢ and j, and the wish is to com-
pute pigment according to an alternative algorithm
B
L )|
PIG, = A, [L’N( 1)}

Lwn (A)) 81

using regionally-derived parameters, A, and B,. In this
situation, it is possible to use the saved level-3 statistics

10

for PIG to estimate statistics for PIG,. Substituting the
means of Lyy(A;) and Lwn(A;) into (31) is not recom-
mended.

The recommended procedure is, first, to estimate the
mean and variance of In(PIG) according to (20) and (21).
These statistics can be denoted by mg4 and sg, respectively.
The mean of ln(PIGr) is then given by

B,
m, = ln(A,.) + B—g(mg—ln(Ag)> (32)
and the variance of ln(PIGr) is
B2 2
s2 = ];gg. (33)

These statistics can then be substituted into (22)—(25),
replacing m,. = m,, and s2 = s2, to obtain the statistics
for PIG,.

This flexibility is the primary reason that the MLE
method was chosen over the more commonly used esti-
mation methods, e.g., arithmetic averages, for estimating
spatial and temporal means. As shown in Section 3, the
MLE estimator for the mean proved to be equivalent to
the arithmetic average for spatial averages of CZCS data,
and, in most situations, for temporal averages of moored
fluorometer data. The statistical study detailed in Sec-
tion 3 provides empirical evidence to support the use of
the MLE method, as well as theoretical results which ex-
plain its success and, in some instances, failure for certain
data sets.

3. EMPIRICAL BASIS

In 1992-93, a study was conducted to address statis-
tical questions related to level-3 binning algorithms for
SeaWiFS data. The questions addressed and recommen-
dations derived from this study have been presented in
Section 2 of this report. Here, the actual results of this
study are presented. Results pertaining to spatial binning
algorithms are presented in Section 3.1, followed by results
pertaining to temporal binning algorithms in Section 3.2.
Following the presentation of results, Section 3.3 contains
a discussion of the major conclusions. Questions concern-
ing the equivalence of the MLE and AVG methods are
addressed in this section, and specific situations are de-
scribed when the two methods would and would not be
equivalent.

3.1 Spatial Statistics

The first step in creating level -3 data involves averaging
data from a single orbital pass. This is considered the spa-
tial binning step, because the data involved are regarded
as simultaneous.

Three questions related to spatial binning were ad-
dressed:
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1. How should level-2 data be averaged to provide
the best estimate of their mean?

2. How should level-4 means be estimated?
3. What statistics should be saved?

These are the first three questions presented and discussed
in Sections 2.2.1-2.2.3.

3.1.1 Methods

Full-resolution CZCS data were used to address the
aforementioned questions. The procedure was to use the
full-resolution data to define the true mean of each variable
within 9 x 9km? bins and to compare other estimates of
the mean against the true mean.

Seven scenes were selected as representative of the full
range of variability in CZCS data. Details of these scenes
are given in Table 1. The level-1 data were processed ac-
cording to standard algorithms using the DSP ANLY2DBL
code [Rosenstiel School of Marine and Atmospheric Sci-
ence (RSMAS) 1990]. (The version of ANLY2DBL.EXE used
in processing CZCS data was created 19 April 1990, and
modified 18 September 1991). The resulting level -2 vari-
ables involved in this study were:

Lwn () normalized water-leaving radiances in bands
i=1-3,
CHL pigment concentration (chlorophyll), and

K499 diffuse attenuation coefficient at A\ = 490 nm.

The normalized water-leaving radiances are radiances cor-
rected for variations in solar zenith angle across the scan.
All radiances are corrected to correspond to a solar zenith
angle of zero. Details of the algorithms used may be found
in Gordon et al. (1988).

The algorithm for K99 was

—1.491
K90 = LW—(M)] (34)

0.022 + 0.088
lLW (A3)

where Ly, ()\Z) is the non-normalized water-leaving radi-
ance in band 7. The quantity CHL was derived using a
bifurcated algorithm that involved two ratio formulas:

-L (A )- —1.705
CHLy; = 1.130| 2222 (35)
_LW()\g)_
and
-L (A )- —2.44
CHLy; = 3.327| 22522 (36)
()

According to this algorithm, CHL was equal to CHL3 ex-
cept when both formula values exceeded 1.5mgm™3, in
which case, CHL was equal to CHL23. The CHL;3 ra-

tio was employed in all of the scenes analyzed, whereas

the CHL,3 ratio was employed in only three of the seven
scenes.

After the scenes were processed to standard level-2
data, pixels in each scene were sorted into 9 x 9km? bins
oriented in rows perpendicular to the ground track of the
satellite. Based on an instantaneous field-of-view (IFOV)
angle of 0.865x 102 radians (0.496°) and a sensor altitude
of 955 km (and ignoring tilt), the spatial resolution of pix-
els at nadir is 0.825km. The maximum number of pixels
that fit into a 9 x 9km? bin was 121 (11 x 11). This oc-
curred only within £300 pixels of nadir where pixels have
spatial resolutions < 0.9 km.

3.1.1.1 Estimators of the Mean

Only cloud-free bins containing 121 pixels were used for
the analysis. All estimators were evaluated using both full-
resolution (LAC) data and 4km resolution (GAC) data.
The latter were obtained by subsampling every fifth pixel
on every fifth line (since 5 x 0.825 ~ 4km). Thus, LAC
estimators were based on 121 level -2 observations, whereas
for GAC data, the number of observatons (pixels falling in
these bins) ranged from 4-9.

The estimators compared were:

AVG

AVG4
MLE

arithmetic average (2) based on LAC data,
arithmetic average based on GAC data,

maximum likelihood estimator (5) based on
LAC data,

maximum likelihood estimator based on GAC
data,

geometric mean or median estimator (4)
based on LAC data, and

geometric mean or median estimator based
on GAC data.

For each bin, the AVG estimator based on LAC data
(n = 121) is given in (2) and was considered the true mean.
In this equation, Xj; is the ith observation or realization of
the variable X [equal to Lwn (A1), Lwn(A2), Lwn(As),
CHL, or K490], and n is the number of observations (pix-
els) falling in a bin. The true mean was computed for
each variable and each bin having n = 121 valid observa-
tions. The other estimators of the mean were compared
with Yavg to determine how well they performed.

MLE4
MED

MED4

3.1.1.2 Standard Level-2 Variables

Let X = [LWN()\l)7LWN()\2>,LWN()\g),CHL,K490] re-
fer to the vector of standard variables, and let Y = f(X)
be any function that is derived from one or more of the
standard variables.

The arithmetic mean of the function based on LAC

data (n=121)
— 1 —
Yoy = E}_l:Yi (37)

11
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Table 1. CZCS scenes used for the analysis of spatial statistics. The scenes are listed in increasing order
of mean pigment (see Fig. 1). The number of lines listed were for the whole scene, and the number of bins
given is the number of 9 x 9km? bins containing data. Time is given in Greenwich Mean Time (GMT) in the
(left-to-right) order of hour, minutes, and seconds. (Note: In Tables 2 and 3, the number of bins listed is the

number of bins containing n = 121 pixels. Only these

cloud-free bins were used to define true means in the

images.)
1D Orbit Date Time Tilt Location Lines Bins
1 1,200 19 Jan 79 1:56:27 20° Northwestern Pacific 1,023 3,186
2 218 9 Nov 78 0:52:23 0 Northwestern Pacific 1,023 2,964
3 1,029 6Jan 79 16:38:13 —14 South Atlantic 1,023 3,087
4 1,016 5Jan 79 18:33:31 6 Eastern Tropical Pacific 2,376 8,266
5 1,452 6 Feb 79 7:19:17 8 Indian Ocean 1,584 7,475
6 971 2Jan 79 12:31:21 -2 Northwest of Africa 1,023 1,040
7 1,386 1Feb 79 12:45:19 20 Southwest of Africa 1,584 4,020

was considered its true mean, where Y; = f(XZ) is the
function calculated at pixel i. This defined the AVG esti-
mator for Y. Similarly, the AVG4, MLE and MLE4 esti-
mators for the mean of Y were defined by substituting Y;
for X; in the appropriate equations. In addition to these
estimators, the FNC (function) estimator was defined as
Yie = f(Xavg) (38)
where Ya\,g is the arithmetic average of X. This would be
the result of calculating the function using level-3 means.
It was called FNC when Yavg was the AVG estimator, and
FNC4 when Ya\,g was the AVG4 estimator.
Functions that were investigated were as follows:

ICk integral pigment (1) within the upper optical
depth,
Z. 1% light depth, and

Y4, p pigment algorithm A(LWN()\l)/LWN()\g))B,
where A =1and B = -1, -2, and —3.

3.1.1.3 Relative Errors

For each bin, the relative error in an estimate of the
mean, X, was defined as a percentage of the true mean
Xave -
Xest — X
Zest — ave  100%

avg
where X5 was the estimate based on the MLE, MED,
AVG4, MLE4, or MED4 estimator. Similarly, relative er-
rors in estimates of the mean of a function, Y., were
defined as a percentage of Vavg, where Yy was the esti-
mate based on the MLE, FNC, AVG4, MLE4, or FNC4

estimator.

ERROR = (39)

3.1.2 Results

In Table 1, the scenes are listed in order of increasing
mean pigment. In presenting results, scenes will be identi-
fied by the number (order) found in column 1 of this table.
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3.1.2.1 Pigment Distributions

The pigment means and coefficients of variation (CV)
for the seven scenes are compared in Fig. 3. Histograms of
log(CHL) are shown in Fig. 4, where the abscissa is the 8-
bit image value V', which is related to the logarithm (base
10) of pigment as

—-1.4 + 0.012V.

log (CHL) (40)
The distributions of log(CHL) shown in Fig. 4 appear to
be either single normal distributions, e.g., scene 1, or mix-
tures of normal distributions, e.g., scene 3. Thus, CHL is
approximately lognormally distributed within each scene
or within portions of each scene.

In scenes 4, 6, and 7, the bifurcated CHL algorithm
resulted in a discontinuity at CHL = 1.5mgm=3 (V =
132). Values to the left of V' = 132 have been calculated
according to CHL13 (35), whereas values to the right were
calculated according to CHLa3 (36). This is an artifact of
the CZCS pigment algorithm, which will be avoided when
defining the SeaWiFS CHL algorithm. In scenes 6 and
7, CHL was recalculated using the CHL;3 algorithm for
all pixels. The resulting CHL distributions are shown in
Fig. 5.

3.1.2.2 Comparison of Estimators

Representative results for estimators of CHL are shown
in Figs. 6 and 7. Each point in these scatter plots corre-
sponds to a bin in scene 4, the scene with the highest over-
all variance. The scales are log-log. In Fig. 6, the MLE,
MED, MLE4, and MED4 estimates are plotted against the
AVG estimate. The patterns shown here are typical of
those observed in all the scenes analyzed. In all scenes,
the MLE estimator was nearly identical to the AVG esti-
mator, whereas the MED estimator underestimated AVG.
There was no discernible difference between the MLE4 ver-
sus AVG and MED4 versus AVG plots. Both contained
substantially more scatter than the plots involving MLE
and MED estimates.
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